python:intvectorrange
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
python:intvectorrange [2010/10/29 11:50] – tkbletsc | python:intvectorrange [2012/09/25 13:04] (current) – tkbletsc | ||
---|---|---|---|
Line 12: | Line 12: | ||
# if only one argument is given to __init__, then the range goes from [0,0,...,0] to the vector given | # if only one argument is given to __init__, then the range goes from [0,0,...,0] to the vector given | ||
class IntVectorRange(object): | class IntVectorRange(object): | ||
- | def __init__(self, | + | |
- | if end is None: | + | if end is None: |
- | end=start | + | end=start |
- | start=[0] * len(end) | + | start=[0] * len(end) |
- | self.start=start | + | |
- | self.end=end | + | self.end=end |
- | self.size = len(start) | + | self.size = len(start) |
- | self.delta = [end[i]-start[i]+1 | + | self.delta = [end[i]-start[i]+1 |
- | self.len = reduce(lambda x,y: x*y, self.delta, 1) | + | self.len = reduce(lambda x,y: x*y, self.delta, 1) |
- | def __getitem__(self, | + | |
- | if index >= self.len: raise IndexError | + | if index >= self.len: raise IndexError |
- | r = [0] * self.size | + | r = [0] * self.size |
- | for i in xrange(self.size): | + | for i in xrange(self.size): |
- | r[i] = index % self.delta[i] + self.start[i] | + | r[i] = index % self.delta[i] + self.start[i] |
- | index /= self.delta[i] | + | index /= self.delta[i] |
- | return r | + | return r |
- | def __len__(self): | + | |
- | + | ||
- | # provides | + | # Provides |
# (based on a binary IntVectorRange object) | # (based on a binary IntVectorRange object) | ||
- | class AllCombinations: | + | # |
- | def __init__(self, | + | # Example: AllSubsets([' |
- | self.vector_range = IntVectorRange([1] * len(items)) | + | # [] |
- | self.items = items | + | # |
- | + | # | |
- | def __getitem__(self, | + | # |
- | v = self.vector_range[index] | + | # |
- | return [self.items[i] for i in xrange(len(v)) if v[i]] | + | # |
- | + | # | |
- | def __len__(self): | + | # |
+ | class AllSubsets: | ||
+ | def __init__(self, | ||
+ | self.vector_range = IntVectorRange([1] * len(items)) | ||
+ | self.items = items | ||
+ | |||
+ | def __getitem__(self, | ||
+ | v = self.vector_range[index] | ||
+ | return [self.items[i] for i in xrange(len(v)) if v[i]] | ||
+ | |||
+ | def __len__(self): | ||
# for academic purposes only, here's the same class based on inheritence instead of composition | # for academic purposes only, here's the same class based on inheritence instead of composition | ||
- | class AllCombinations2(IntVectorRange): | + | class AllSubsets2(IntVectorRange): |
def __init__(self, | def __init__(self, | ||
super(AllCombinations2, | super(AllCombinations2, | ||
Line 55: | Line 65: | ||
v = super(AllCombinations2, | v = super(AllCombinations2, | ||
return [self.items[i] for i in xrange(len(v)) if v[i]] | return [self.items[i] for i in xrange(len(v)) if v[i]] | ||
+ | |||
+ | |||
+ | # Provides a list with all possible " | ||
+ | # | ||
+ | # Example: AllCombinations([" | ||
+ | # | ||
+ | # | ||
+ | # | ||
+ | # | ||
+ | # | ||
+ | # | ||
+ | # | ||
+ | # | ||
+ | # | ||
+ | class AllCombinations: | ||
+ | def __init__(self, | ||
+ | self.vector_range = IntVectorRange([len(choice)-1 for choice in choices]) | ||
+ | self.choices = choices | ||
+ | |||
+ | def __getitem__(self, | ||
+ | c_indices = self.vector_range[index] | ||
+ | return [self.choices[i][c_indices[i]] for i in xrange(len(self.choices))] | ||
+ | |||
+ | def __len__(self): | ||
</ | </ | ||
+ | |||
+ | This can be used to build a simple combinatorial optimizer: | ||
+ | < | ||
+ | import operator | ||
+ | |||
+ | # Optimize the return value of the given function func(), comparing return values with the is_this_better() function (which defaults to greater-than). | ||
+ | # All parameters must be named parameters, and come after all other arguments. Options: | ||
+ | # - Print out the latest best answer if print_on_better is True | ||
+ | # - If return_choices_only is True, then the best_inputs part of the return will only have the choices, not the fixed values | ||
+ | # Returns the tuple: (best_inputs, | ||
+ | # | ||
+ | # Example: | ||
+ | # def f(x,y,z): return x**2+x+5-y**3+z | ||
+ | # print optimize(f, x=Choice(range(-3, | ||
+ | # | ||
+ | # This finds the best x and y to maximize f(x,y,z) with the given choices, with z fixed at 2. | ||
+ | class Choice(list): | ||
+ | def optimize(func, | ||
+ | choices = {} | ||
+ | fixed_values = {} | ||
+ | for k,v in vargs.items(): | ||
+ | if isinstance(v, | ||
+ | else: fixed_values[k] = v | ||
+ | c_keys = choices.keys() | ||
+ | c_value_choices = [choices[k] for k in c_keys] | ||
+ | |||
+ | best_value = None | ||
+ | best_inputs = None | ||
+ | for c_values in AllCombinations(c_value_choices): | ||
+ | chosen = dict((k, | ||
+ | all_values = chosen.copy() | ||
+ | all_values.update(fixed_values) | ||
+ | value = func(**all_values) | ||
+ | if best_value is None or is_this_better(value, | ||
+ | best_inputs = chosen if return_choices_only else all_values | ||
+ | best_value = value | ||
+ | if print_on_better: | ||
+ | return (best_inputs, | ||
+ | |||
+ | </ | ||
+ | |||
+ |
python/intvectorrange.1288378232.txt.gz · Last modified: 2010/10/29 11:50 by tkbletsc