User Tools

Site Tools


python:intvectorrange

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
python:intvectorrange [2010/05/27 08:41] – created tkbletscpython:intvectorrange [2012/09/25 13:04] (current) tkbletsc
Line 10: Line 10:
 #   [0, 1, 3] #   [0, 1, 3]
 #   [1, 1, 3] #   [1, 1, 3]
-class IntVectorRange: +# if only one argument is given to __init__, then the range goes from [0,0,...,0] to the vector given 
- def __init__(self,start,end=None): +class IntVectorRange(object)
- if end is None: +    def __init__(self,start,end=None): 
- end=start +        if end is None: 
- start=[0] * len(end) +            end=start 
-  +            start=[0] * len(end) 
- self.start=start +  
- self.end=end +        self.start=start 
- self.delta = [end[i]-start[i]+1  for  i in xrange(len(start))] +        self.end=end 
- self.len = reduce(lambda x,y: x*y, self.delta, 1) +        self.size = len(start) 
- self.size = len(start) +        self.delta = [end[i]-start[i]+1  for  i in xrange(self.size)] 
-  +        self.len = reduce(lambda x,y: x*y, self.delta, 1) 
- def __getitem__(self,index):  +  
- if index >= self.len: raise IndexError +    def __getitem__(self,index):  
- r = [0] * self.size +        if index >= self.len: raise IndexError 
- for i in xrange(len(self.start)): +        r = [0] * self.size 
- r[i] = index % self.delta[i] + self.start[i] +        for i in xrange(self.size): 
- index /= self.delta[i] +            r[i] = index % self.delta[i] + self.start[i] 
- return r+            index /= self.delta[i] 
 +        return r 
 +  
 +    def __len__(self): return self.len 
 +  
 +# Provides a list with all possible subsets of the given list 
 +# (based on a binary IntVectorRange object) 
 +
 +# Example: AllSubsets(['alpha','beta','gamma']) yields: 
 +#   [] 
 +#   ['alpha'
 +#   ['beta'
 +#   ['alpha', 'beta'
 +#   ['gamma'
 +#   ['alpha', 'gamma'
 +#   ['beta', 'gamma'
 +#   ['alpha', 'beta', 'gamma'
 +class AllSubsets: 
 +    def __init__(self,items): 
 +        self.vector_range = IntVectorRange([1] * len(items)) 
 +        self.items = items 
 +  
 +    def __getitem__(self,index): 
 +        v = self.vector_range[index] 
 +        return [self.items[i] for i in xrange(len(v)) if v[i]] 
 +  
 +    def __len__(self): return len(self.vector_range) 
 + 
 +# for academic purposes only, here's the same class based on inheritence instead of composition 
 +class AllSubsets2(IntVectorRange): 
 + def __init__(self,items): 
 + super(AllCombinations2,self).__init__([1] * len(items)) 
 + self.items = items
   
- def __len__(self): return self.len+ def __getitem__(self,index): 
 + v = super(AllCombinations2,self).__getitem__(index) 
 + return [self.items[i] for i in xrange(len(v)) if v[i]] 
 + 
 + 
 +# Provides a list with all possible "choices" of the sublists of the input list 
 +
 +# Example: AllCombinations(["abc","123"]) yields: 
 +#   ['a', '1'
 +#   ['b', '1'
 +#   ['c', '1'
 +#   ['a', '2'
 +#   ['b', '2'
 +#   ['c', '2'
 +#   ['a', '3'
 +#   ['b', '3'
 +#   ['c', '3'
 +class AllCombinations: 
 +    def __init__(self,choices): 
 +        self.vector_range = IntVectorRange([len(choice)-1 for choice in choices]) 
 +        self.choices = choices 
 +  
 +    def __getitem__(self,index): 
 +        c_indices = self.vector_range[index] 
 +        return [self.choices[i][c_indices[i]] for i in xrange(len(self.choices))] 
 +  
 +    def __len__(self): return len(self.vector_range) 
 </code> </code>
 +
 +This can be used to build a simple combinatorial optimizer:
 +<code=python>
 +import operator
 +
 +# Optimize the return value of the given function func(), comparing return values with the is_this_better() function (which defaults to greater-than).
 +# All parameters must be named parameters, and come after all other arguments. Options:
 +# - Print out the latest best answer if print_on_better is True
 +# - If return_choices_only is True, then the best_inputs part of the return will only have the choices, not the fixed values
 +# Returns the tuple: (best_inputs,best_value)
 +#
 +# Example:
 +#   def f(x,y,z): return x**2+x+5-y**3+z
 +#   print optimize(f, x=Choice(range(-3,5)), y=Choice(range(-3,5)), z=2)
 +
 +# This finds the best x and y to maximize f(x,y,z) with the given choices, with z fixed at 2.
 +class Choice(list): pass
 +def optimize(func, is_this_better=operator.gt, print_on_better=False, return_choices_only=False, **vargs):
 +    choices = {}
 +    fixed_values = {}
 +    for k,v in vargs.items():
 +        if isinstance(v,Choice): choices[k] = v
 +        else:                    fixed_values[k] = v
 +    c_keys = choices.keys()
 +    c_value_choices = [choices[k] for k in c_keys]
 + 
 +    best_value = None
 +    best_inputs = None
 +    for c_values in AllCombinations(c_value_choices):
 +        chosen = dict((k,c_values[i]) for i,k in enumerate(c_keys))
 +        all_values = chosen.copy()
 +        all_values.update(fixed_values)
 +        value = func(**all_values)
 +        if best_value is None or is_this_better(value,best_value):
 +            best_inputs = chosen if return_choices_only else all_values
 +            best_value = value
 +            if print_on_better: print best_inputs,best_value
 +    return (best_inputs,best_value)
 +
 +</code>
 +
 +
python/intvectorrange.1274974896.txt.gz · Last modified: 2010/05/27 08:41 by tkbletsc

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki